Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

نویسندگان

  • Surya Kant
  • Saman Seneweera
  • Joakim Rodin
  • Michael Materne
  • David Burch
  • Steven J. Rothstein
  • German Spangenberg
چکیده

Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of nitrogen stress and salicylic acid on the physiological characteristics of borage

Deficiency of nitrogen may lead to decrease in yield and yield potential of crop plants. An experiment was done under glasshouse conditions in order to investigate nitrogen levels and salicylic acid interaction on some physiologic traits of borage (Borago officinials L.). In this experiment various levels of nitrogen (including; 27.5, 55, 110, 220 and 330 mg/L from ammonium nitrate) and salicyl...

متن کامل

Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis?

The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3 (-)) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3 (-) supply as the sole source of N. Although g varie...

متن کامل

Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply, in a Mediterranean environment

The short and long-term responses of flag leaf stomatal conductance (gs) and rate of photosynthesis (An) to elevated CO2 (757 μmol mol), 4 oC warmer temperatures and N supply were investigated in spring wheat (Triticum aestivum L. cv. Alcalá) crops grown in two seasons in field conditions under temperature gradient tunnels, in a Mediterranean environment. Plants grown at elevated CO2 had lower ...

متن کامل

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless...

متن کامل

FACE-ing the global change: Opportunities for improvement in photosynthetic radiation use efficiency and crop yield

The earth is rapidly changing through processes such as rising [CO2], [O3], and increased food demand. By 2050 the projected atmospheric [CO2] and ground level [O3] will be 50% and 20% higher than today. To meet future agricultural demand, amplified by an increasing population and economic progress in developing countries, crop yields will have to increase by at least 50% by the middle of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012